
UCRL-JRNL-202203

Large plasma pressure perturbations and
radial convective transport in a tokamak

S. Krasheninnikov, D. Ryutov, G. Yu

February 5, 2004

Journal of Plasma and Fusion Research



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



1

Large plasma pressure perturbations and

radial convective transport in a tokamak

KRASHENINNIKOV Sergei,  RYUTOV Dmitri1), YU Guanghui

University of California at San Diego, La Jolla, CA 92093, USA

1) Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

e-mail: skrash@mae.ucsd.edu

Abstract

Strongly localized plasma structures with large pressure inhomogeneities (such as plasma blobs

in the scrape-off-layer (SOL)/shadow regions, pellet clouds, ELMs) observed in the tokamaks,

stellarators and linear plasma devices. Experimental studies of these phenomena reveal striking

similarities including more convective rather than diffusive radial plasma transport. We suggest

that rather simple models can describe many essentials of blobs, ELMs, and pellet clouds

dynamics. The main ingredient of these models is the effective plasma gravity caused by

magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing

plasma transport in such localized structures appear to be rather similar to that used to describe

nonlinear evolution of thermal convection in the Boussinesq approximation  (directly related to

the Rayleigh-Taylor  instability).

Keywords: pressure perturbation, pellet cloud, ELM, blob, convective transport, Rayleigh-

Taylor instability

1. Introduction

In many cases strongly localized, in the plane perpendicular to the magnetic filed lines, plasma

pressure inhomogeneities emerge in tokamaks.  The examples of such cases are the plasma

blobs in the scrape-off-layer (SOL) [1-8], pellet clouds [9, 10], ELMs [11, 12]. Even though at

first glance they look very different, they all exhibit more convective rather than diffusive radial

transport of a plasma. Similar features of convective crossfield plasma transport toward the wall

were observed also in stellarators [13] and linear plasma devices [14, 15].

Rather detailed experimental study of these phenomena shows striking similarities

between them. For example, the temporal profiles of ion saturation currents in plasma blobs,

measured by probes, in tokamak SOL [1] and in the shadows of linear devices [15] look

virtually the same. Another example is the similarities in probe measurements of plasma blobs

in both L- and H-modes and ELMs, although of relatively small amplitudes which do not

damage the probe, [11].

In this paper we suggest that rather simple two-dimensional (2D) models can describe

many essentials of blobs, small ELMs, and pellet clouds dynamics. The main ingredient of these

models based on an ideal magnetohydrodynamics (MHD) is the effective plasma gravity caused
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by magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing

plasma transport in blobs, small ELMs, and pellet clouds appear to be rather similar to those

used to describe nonlinear evolution of the Rayleigh-Taylor instability [16]. Therefore, it is not

surprising that all these plasma physics phenomena have many similar features.

The paper is organized as follows. In Section 2 we review the equations describing blob

dynamics in the far SOL [6] and in the shadows of linear devices [17], as well as discuss the

results of both analytic and numerical solution of these equations [6, 18]. In Section 3 we derive

equations describing blob dynamics in the vicinity of the separatrix to account for the effects of

cross-field conductivity [19] caused by a strong shear of the magnetic field near the X-point

[20].  Based on these equations we are also presenting the estimates of the blob radial velocity

in the region close to separatrix. In Section 4 we discuss the equations, which can be used to

model main features of the dynamics of blobs with large plasma beta and show their similarity

to studies of evolution of pellet clouds [9, 10]. We also present some results of numerical

modeling of these equations. In Section 5 we discuss the material presented in previous

Sections in the contex of the studies of nonlinear evolution of RT instability and summarize our

main conclusions.

2. Blob dynamics in far SOL of tokamak and shadow of linear device

In order to explain experimental results [21] of fast radial transport of plasma through the SOL

of main chamber a simple 2D model was suggested in [6]. The main idea of this model can be

described as follows. Time to time, due to some nonlinear processes, the plasma blobs

(filaments, extended along the magnetic field lines and seen on visual diagnostics  [3] as a blob)

are peeled off from the bulk plasma and move radially through the SOL toward the wall with

high speed due to ∇B plasma polarization and corresponding E×B drift. The plasma density in

the blob is much higher that ambient plasma density in far SOL and comparable to that of the

bulk plasma in the vicinity of the saparatrix. Therefore, even though blobs are peeled off the

bulk not often, their contributions to plasma energy and particle transport in far SOL can be

dominant. In linear devices the role of ∇B in plasma polarization can be played by centrifugal

force or neutral wind effects [17]. We notice that this physical picture of dominant role of blobs

in plasma transport in tokamak far SOL and the shadows of linear devises was later supported

by experimental observations in both tokamaks and linear devices.

To describe blob dynamics in tokamak far SOL we use quasi-slab approximation of the

outer side of the torus, with x and y coordinates being radial and poloidal directions and straight

magnetic field lines intersecting material surfaces situated at distance Lc (with the subscript

“c” standing for “connection”) from each other (see Fig. 1). We assume cold ions and fixed

electron temperature ( Te) which is uniform and constant in time. Then in electrostatic

approximation from electron and ion momentum balance equations and ∇ ⋅ =j 0, where j is the

electric current, we find
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where R is the tokamak major radius, n is the plasma density, B R∝1/  is the toroidal magnetic

field strength, Ωi is the ion-cyclotron frequency, c is the light speed, φ ϕ= e Te/ , e is the

elementary charge, ϕ  is the electrostatic potential, d dt t(...) / (...) / (...)= + ⋅ ∇×∂ ∂ uE B ,

u BE B× = ×∇c B( ) /ϕ 2, j|| is the parallel current.
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where j||( )1  and j||( )2  are the currents to the walls
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M and m are the ion and electron masses respectively, C T Ms e= ( )/ /1 2, sw = ±1 depending on

the orientation of the wall with respect to the coordinate frame, φw is the potential of the wall

(here we assume φw const= .). For relatively small fluctuating part of electrostatic potential,

| |φ <1, from (3) we have j wall enCw s||( ) = σ φ. Substituting this expression in (2) we find
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where ρs s iC= /Ω . Eq (4) with the continuity equation
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govern blob dynamics in far SOL region (the term in right hand side of Eq. (5) describes

plasma leakage to material surface along the magnetic field lines).

In the absence of ambient plasma the equations (4), (5) allow the solution in the form of

traveling wave (blob) [6],
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where n xb( ) is an arbitrary function, δy is the effective poloidal width of the blob,  and
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is the velocity of the blob. For T eVe ~ 30 , B T~ 2 , δy cm~ 1 , L qRc ~ , where q is the safety

factor (~3), from Eq. (7) we find V cm sb ~ /105 , which is close to the experimental

observations [1-5].

In the case of linear devices, where there are no magnetic field curvature effects, plasma

polarization can be due to centrifugal force or neutral wind. The later one is related to

asymmetry in neutrals distribution function [17]. The neutrals coming to the wall from plasma

side experienced some plasma-neutral interactions. Therefore, they are hotter than the neutrals

coming from the wall. As a result of this asymmetry, in the shadow regions of linear devices

there is neutral-ion friction force (neutral wind) even though neutral particle flux is negligibly

small. In a sense, neutral wind is an extension of thermal force to the semi-collisional situation.

Taking neutral wind effects into account, the analog of Eq. (4) can be written as follows
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where η νpolar iN i~ /Ω  is the plasma polarization factor and νiN is the ion-neutral collision

frequency. Notice that with replacement η νpolar iN i~ /Ω  on η ρpolar s R= 2 /  the equations (4)

and (8) are virtually the same. It explains the similarities of blobs in tokamak SOL and shadows

in linear devices seen in experiments.

Study of blob dynamics governed by Eq. (8) and (5) shows [18] that the blobs with

crossfield scale

δ δ ρ
ρ

ηb s
c

s
polar

L
~

/
/

∗ =








 ( )2

2 5
1 5

 (9)

(we assume here that δ δ δb y y≡ ~ ) are very stable structurally and propagate radially on large

distance keeping its shape intact. Blobs bigger than δ∗ are the subjects of the RT instability,

which splits them in a few smaller ones. Blobs smaller than δ∗ are quickly transformed into

mushroom shape with thin front like structures [8] and their further evolution is sensitive even

to weak plasma diffusion.

3. Blob dynamics in the vicinity of separatrix

In previous section we analyzed blob dynamics in tokamak far SOL where magnetic field lines

have a very simple geometry. However, blobs are peeled off from bulk plasma in the vicinity of

the separatrix (in diverted tokamaks). To describe blob dynamics there we need to account for

geometrical effects of a strong shear of the magnetic field near the X-point.  In [20] it was

shown that magnetic shear in the vicinity of X-point results in dramatic squeezing of magnetic

flux tubes. Fig. 2 shows this schematically schematically. The shadowed regions represent the

same flux tube when it passes near the x-point, from the position 1 in the main SOL, to position

3 in the divertor leg. Due to a very strong squeezing of the tube in the vicinity of X-point, its
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minimal width for standard tokamak conditions decreases from ~1 cm around the mid-plane to

less than the ion gyro-radius close to X-point  [20]. As a result, the effects of finite cross-field

resistivity, otherwise small, are strongly magnified [19, 22] and play an important role.

In order to incorporate these effects into our simplified physical picture of blob

dynamics we will use a heuristic model developed in [19]. The essence of this model is the

substitution of exact solution of penetration of the electrostatic potential into X-point region by

an effective boundary condition relating parallel current and potential at the entrance to the X-

point region. To derive this relation, we take into account squeezing of the flux tube we

introduce: a) squeezing function   S LX( ) exp( / )l l≈ − , where  l is the length along the magnetic

field line and LX is the effective squeezing length (usually in current large tokamaks

L cmX ~ 103 ), and b) the effective wave number of the potential perturbation   K k S( ) / ( )l l= ,

where k is the wave number at the entrance into the X-point region.  Then, we balance

perpendicular,   j i K⊥ ⊥= − σ ϕ( )l , and parallel,   j|| ||( / )= −σ ∂ϕ ∂l , currents via the ∇⋅j=0 equation,

  ∂ ϕ σ σ ϕ2 2 2/ ( / ) ( )||l l= − ⊥ K , where σ ω ν π⊥ = pe ei e
2 24/( )Ω  and σ ω πν⊥ = pe ei

2 4/( )  (notation is

standard). As a result, we find a relation between parallel current and electrostatic potential at the

entrance to the X-point region [19]

j kentr eff entr|| | |≈ σ ϕ , (10)

where σ ω πeff pe eG= 2 4/( )Ω , and G is order unity phenomenological coefficient.  Notice that

the squeezing of the magnetic flux tube occurs near the separatrix in both open and closed flux

surfaces and, therefore, the expression (10) can be applied at both sides from the separatrix.

We can use the relation (10) to close equation (1) after the integration along the

magnetic field like as we did in Section 2, where magnetic field lines were going through the

wall and we used relation (3) to close Eq. (2). For simplicity, we consider only a symmetric

double-null divertor, so that Eq. (10) should be applied at both ends of the flux tube (with the

obvious change of the sign). Then, approximating wave number of the blob at the entrance into

the X-point region as k b~ /1 δ  we find
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where Lb is the parallel length of the blob. From Eq (11) we estimate radial velocity of the blob

V
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δ
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Thus we find that strong squeezing of magnetic flux tube in the vicinity of X-point do not

prohibit the blob radial motion. By taking into account effective X-point resistivity [19] we

describe blob motion in the vicinity of the separatrix in both closed and open magnetic flux

surfaces. Moreover, comparing the expressions (7) and (12) we see that close to the separatrix
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Vb s b∝ <<ρ δ/ 1, while in the far SOL Vb s b∝ ( / )ρ δ 2. Therefore, it can explain experimental

observations [5] of higher blob velocity in the region close to the separatrix than in far SOL.

4. Dynamics of blobs with large beta

In previous sections we neglected an impact of blob on the structure of the magnetic field.

However, in case of large beta of blob plasma, βb, such impact can be very important. In order

to address this issue we estimate the perturbation of the magnetic field due to the blob motion in

a tokamak. In this case, the plasma polarization current is balanced by parallel current dipole
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, (13)

which gives the following magnitude of radial perturbation of the magnetic field strength, Br ,
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As a result, the magnetic field line bends in radial direction. Since bending of magnetic field like

propagates along B with the Alfven velocity V B nMA = ( ) /4 1 2π  such quasi-steady state

approximation of the magnetic field line structure can be considered if
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Then, taking into account expressions (7) and (12) for blob velocity, we find from inequality

(15):

V C
L
Rb s b

b˜ /< β1 2 . (16)

However, at relatively large βb bending of the magnetic field lines becomes  so strong

that the magnetic field line would “touch” first wall without even going through the material

surfaces of divertor targets or limiters (see Fig. 3). Taking into account expression (14) from

Fig. 3 one sees that such situation occurs for

β βb crit
w

c

R

L
˜ ~>

∆
2

, (17)

where we assume L Lb c≈ , ∆w is the distance from last closed flux surface to the first wall. In

order to describe the evolution of blobs with β βb crit>  within the framework of simple 2D

model, we use the approach adopted in the studies of the dynamics of pellet clouds [9, 10].

Introducing the vector potential A|| and taking into account that the bending of magnetic field

propagates along the field line with Alfven speed, from relation E c A t|| || || /= −∇ − =−ϕ ∂ ∂1 0 we

find ϕ = ( / ) ||V c AA  and, correspondingly,
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where the Alfven velocity is calculated with the density of ambient plasma namb=const. The

equation (19) is just the same as the equation describing the evolution of pellet clouds in [9, 10].

The results of numerical solution of Eq. (19) are shown in Fig. 4 (R=175 cm, L cmb = 4000 ,

ρs cm= 0 06.  V cm sA = ×4 109 / , C cm ss = ×3 106 / ). We see that the seeded blob moves in

the radial direction and simultaneously changes the shape from circular to mushroom shape.

Similar results were also reported in [9].

4. Discussions

Thus we find that the blob dynamics in edge plasmas can be described with rather similar

equations (8), (11), and (19), depending on plasma conditions and geometry. In some sense

these equations are similar to the Boussinesq approximation of 2D thermal convection (related

to the Rayleigh-Taylor instability of a stratified medium)

d g
T
yt∇ + = ∇⊥ ⊥

2 4ψ
∂
∂

µ ψ , d Tt = 0,  (20)

where T is the temperature, g is the effective gravity acceleration, u e= ×∇z ψ is the velocity, µ

is the effective viscosity. However, “dissipative” terms in right hand side of the blob equations

are different than in (20). In case where dissipation is not important we see that mushroom

shape of originally circular blob develops (see for example Ref. [8, 18]) similar to the typical

mushrooms shapes in the dynamics of the Rayleigh-Taylor instability [16]. But, “dissipative”

terms can bring structural stability of blobs when they propagate on large distance as a

coherent structure [6, 8, 18].

We also find that that dynamics of blobs with high beta can be described by the same

equations as the evolution of pellet clouds [9, 10]. As a matter of fact, this is not surprising

since in both cases we consider the evolution of plasma structures with the pressure, which

significantly exceeds the pressure of a surrounding tokamak plasma. Therefore, this may be a

reasonable model for the studies of nonlinear dynamics of large pressure perturbations of

relatively small spatial scale when perturbations can be treated like isolated filaments. One of

the examples of such process can be  ELM of a small amplitude, when tokamak edge plasma is

not perturbed too much, and isolated features of ELM structure are clearly seen in the

experiment [5, 11].



8

The work was performed for the U.S. DoE under contract W-7405-Eng-48 at the

UC LLNL and Grant No. DE-FG03-00ER54568 at the UCSD.



9

References

[1] J. A. Boedo, D. L. Rudakov, R. A. Moyer, et al., Phys. Plasmas, 8, 4826 (2001).

[2] J J. L. Terry, R. Maqueda, C. S. Pitcher, et al., J. Nucl. Mat., 290-293, 757 (2001).

[3] S. J. Zweben, D. P. Stotler, J. L. Terry, et al., Phys. Plasmas, 9, 1981 (2002).

[4] G. Y. Antar, G. Counsell, Y. Yu, et al., Phys. Plasmas, 10, 419 (2003).

[5] J. A. Boedo, D. L. Rudakov, R. A. Moyer, et al., Phys. Plasmas, 10, 1670 (2003).

[6] S. I. Krasheninnikov,  Phys. Letters A, 283, 368 (2001).

[7] D. A. D’Ippolito, J. R. Myra, and S. I. Krasheninnikov Phys. Plasmas 9, 222 (2002).

[8] N. Bian, S. Benkadda, J.-V. Paulsen, et al., Phys. Plasmas 10, 671 (2003).

[9] V. Rozhansky, I. Veselova, and S. Voskoboynikov , Plasma Phys. Control. Fusion 37, 399

(1995).

[10] P. B. Parks, W. D. Sessions, and L. R. Baylor, Phys. Plasmas, 7, 1968 (2000).

[11] D. L. Rudakov, J. I. Boedo, R. A. Moyer, et al., Plasma Phys. Control. Fusion 44, 717

(2002).

[12] G. Counsell, et al, 19th IAEA Fusion Energy Conf., Lyon, France, 14-19 Oct., 2002, Paper

IAEA-CN-94/EX/D1-2.

[13] E. Sanchez, C. Hidalgo, C. Riccardi et al., Phys. Plasmas 7, 1408 (2000).

[14] G. Y. Antar, S. I. Krasheninnikov, P. Devynck, et al., Phys. Rev. Lett. 87, 065001 (2001).

[15] T. Carter, Bull. of the Amer. Phys. Soc. 47, 201 (2002).

[16] Y.-N. Young, H. Tufo, A. Dubey, and R. Rosner, J. Fluid Mech. 447 377 (2001).

[17] S. I. Krasheninnikov and A. I. Smolyakov, Phys. Plasmas, 10, 3020 (2003).

[18] G. Q. Yu and S. I. Krasheninnikov, Phys. Plasmas, 10, 4413 (2003).

[19] D. D. Ryutov and R. H. Cohen to appear in Contributions to Plasma Physics, 2004.

[20] D. Farina, R. Pozzoli, and D. D. Ryutov, Nucl. Fusion 33, 1315 (1993).

[21] M. V. Umansky, S. I. Krasheninnikov, B. LaBombard, and J. L. Terry, Phys. Plasmas, 5,

3373 (1998).

[22] J. R. Myra, D. A. D'Ippolito, X. Q. Xu, and R. H. Cohen, Phys. Plasmas, 7, 2290 (2000).



10

x

y

Lc
B

limiters

Fig. 1. Schematic view of the SOL region.
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Fig. 2. Evolution of the cross-section of magnetic flux tube in the vicinity of separatrix
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Fig. 3. Strong bending of magnetic field line causes touch of first wall without intersection of

limiters.
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Fig. 4. Density contours of blob.




